
ICCV 2025 | HERMES:首个统一3D场景理解与生成的世界模型
ICCV 2025 | HERMES:首个统一3D场景理解与生成的世界模型在复杂的城市场景中,HERMES 不仅能准确预测未来三秒的车辆与环境动态(如红圈中标注的货车),还能对当前场景进行深度理解和问答(如准确识别出 “星巴克” 并描述路况)。
在复杂的城市场景中,HERMES 不仅能准确预测未来三秒的车辆与环境动态(如红圈中标注的货车),还能对当前场景进行深度理解和问答(如准确识别出 “星巴克” 并描述路况)。
现在这个时代,啥都讲究一句话生成。一句话P图、一句话写文案、生成画作、音乐、视频… 不过这些,在今天的想法面前,都显得有些弱了。
最近体验了一个 AI 工具的内测版本,确实跟之前见到的AI产品不太一样。 它做的事情是:一句话,生成一个完整可玩的3D游戏。
3D生成的行业新标杆,这一次由国产玩家树立。 万万没想到,这样一个堪比游戏全景视角的场景,竟然只由一张图片生成?!
中国自研世界模型Matrix-3D只需单张图就能生成可自由探索的3D世界,不仅效果对标李飞飞的World Labs,而且还能实现更大范围的探索空间,率先进入AI理解世界的前沿领域。
北京大学提出了ReMoMask:一种全新的基于检索增强生成的Text-to-Motion框架。它是一个集成三项关键创新的统一框架:(1)基于动量的双向文本-动作模型,通过动量队列将负样本的尺度与批次大小解耦,显著提高了跨模态检索精度;(2)语义时空注意力机制,在部件级融合过程中强制执行生物力学约束,消除异步伪影;(3)RAG-无分类器引导结合轻微的无条件生成以增强泛化能力。
在人工智能快速发展的今天,我们已逐渐习惯于让 AI 识别图像、理解语言,甚至与之对话。但当我们进入真实三维世界,如何让 AI 具备「看懂场景」、「理解空间」和「推理复杂任务」的能力?这正是 3D 视觉语言模型(3D VLM)所要解决的问题。
在高质量3D生成需求日益增长的背景下,如何高效生成结构精良、几何精细的三维资产,已成为AIGC和数字内容创作领域的关键挑战。
想象一下,你随便用手机拍了几张家里的照片,没有精确的相机位置,甚至照片之间重叠都很少。 现在,一个新算法能把这些零散的2D图片,“拼”成一个厘米级精度的3D数字模型,效果好到可以直接放进VR头显里“云旅游”。
3D生成又补齐了一块重要拼图——物理属性! 南洋理工大学-商汤联合研究中心S-Lab,及上海人工智能实验室合作提出了PhysXNet,号称首个系统性标注的物理基础3D数据集。